Two FFT Subspace-Based Optimization Methods for Electrical Impedance Tomography
نویسندگان
چکیده
Two numerical methods are proposed to solve the electric impedance tomography (EIT) problem in a domain with arbitrary boundary shape. The first is the new fast Fourier transform subspace-based optimization method (NFFT-SOM). Instead of implementing optimization within the subspace spanned by smaller singular vectors in subspace-based optimization method (SOM), a space spanned by complete Fourier bases is used in the proposed NFFT-SOM. We discuss the advantages and disadvantages of the proposed method through numerical simulations and comparisons with traditional SOM. The second is the low frequency subspace optimized method (LF-SOM), in which we replace the deterministic current and noise subspace in SOM with low frequency current and space spanned by discrete Fourier bases, respectively. We give a detailed analysis of strengths and weaknesses of LF-SOM through comparisons with mentioned SOM and NFFT-SOM in solving EIT problem in a domain with arbitrary boundary shape.
منابع مشابه
Large-Scale Non-Linear 3D Reconstruction Algorithms for Electrical Impedance Tomography of the Human Head
Non-linear image reconstruction methods are desirable for applications in electrical impedance tomography (EIT) such as brain or breast imaging where the assumptions of linearity are violated. We present a novel non-linear Newton-Krylov method for solving large-scale EIT inverse problems, which has the potential advantages of improved robustness and computational efficiency over previous method...
متن کاملApplications of Electrical Impedance Tomography in Neurology
Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...
متن کاملElectrical Impedance Tomography: from Topology to Shape
A level set based shape and topology optimization approach to electrical impedance tomography (EIT) problems with piecewise constant conductivities is introduced. The proposed solution algorithm is initialized by using topological sensitivity analysis. Then it relies on the notion of shape derivatives to update the shape of the domains where the conductivity takes its different values.
متن کاملElectrical impedance tomography : from topology
Abstract: A level set based shape and topology optimization approach to electrical impedance tomography (EIT) problems with piecewise constant conductivities is introduced. The proposed solution algorithm is initialized by using topological sensitivity analysis. Then it relies on the notion of shape derivatives to update the shape of the domains where conductivity takes different values.
متن کاملElectrical Impedance Tomography: Topology Optimization
The Electrical Impedance Tomography (EIT) is a study of body parts who use electric current. Is studied through computers resistance or conductivity of these parts, producing an image used for medical diagnosis. A body is wrapped in a blanket placed with small electrodes and receivers of electric current, potential difference. Based on data obtained from a series of measurements at the electrod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016